Systemic corticosteroid medications

Systemic corticosteroids play an integral role in the management of many inflammatory and immunologic conditions, but these agents are also associated with serious risks. Osteoporosis, adrenal suppression, hyperglycemia, dyslipidemia, cardiovascular disease, Cushing's syndrome, psychiatric disturbances and immunosuppression are among the more serious side effects noted with systemic corticosteroid therapy , particularly when used at high doses for prolonged periods. This comprehensive article reviews these adverse events and provides practical recommendations for their prevention and management based on both current literature and the clinical experience of the authors.

Three head to head trials involving 148 patients (74 systemic corticosteroids; 74 comparator drugs) were included. Placebo-controlled trials were not found. In the studies, different kinds of systemic corticosteroids and different kinds of control drugs were used, both administered in different routes. Intramuscular triamcinolone acetonide was compared respectively to oral indomethacine, and intramuscular adrenocorticotropic hormone (ACTH); oral prednisolone (together with a single intramuscular diclophenac injection) was compared to oral indomethacine (together with a single placebo injection). Outcome measurements varied: average number of days until total relief of signs, mean decrease of pain per unit of time in mm on a visual analogue scale (VAS) - during rest and activity. In the triamcinolone-indomethacine trial the clinical joint status was used as an additional outcome . Clinically relevant differences between the studied systemic corticosteroids and the comparator drugs were not found; important safety problems attributable to the used corticosteroids were not reported. The quality of the three studies was graded as very low to moderate. Statistical pooling of results was not possible.

The growth of children and adolescents receiving orally inhaled corticosteroids, including QVAR, should be monitored routinely (., via stadiometry). If a child or adolescent on any corticosteroid appears to have growth suppression, the possibility that he/she is particularly sensitive to this effect should be considered. The potential growth effects of prolonged treatment should be weighed against clinical benefits obtained and the risks associated with alternative therapies. To minimize the systemic effects of orally inhaled corticosteroids, including QVAR, each patient should be titrated to his/her lowest effective dose [see Dosage and Administration ( )] .

Corticosteroids have been used as drug treatment for some time. Lewis Sarett of Merck & Co. was the first to synthesize cortisone, using a complicated 36-step process that started with deoxycholic acid, which was extracted from ox bile . [43] The low efficiency of converting deoxycholic acid into cortisone led to a cost of US $200 per gram. Russell Marker , at Syntex , discovered a much cheaper and more convenient starting material, diosgenin from wild Mexican yams . His conversion of diosgenin into progesterone by a four-step process now known as Marker degradation was an important step in mass production of all steroidal hormones, including cortisone and chemicals used in hormonal contraception . [44] In 1952, . Peterson and . Murray of Upjohn developed a process that used Rhizopus mold to oxidize progesterone into a compound that was readily converted to cortisone. [45] The ability to cheaply synthesize large quantities of cortisone from the diosgenin in yams resulted in a rapid drop in price to US $6 per gram, falling to $ per gram by 1980. Percy Julian's research also aided progress in the field. [46] The exact nature of cortisone's anti-inflammatory action remained a mystery for years after, however, until the leukocyte adhesion cascade and the role of phospholipase A2 in the production of prostaglandins and leukotrienes was fully understood in the early 1980s.

Systemic corticosteroid medications

systemic corticosteroid medications

Corticosteroids have been used as drug treatment for some time. Lewis Sarett of Merck & Co. was the first to synthesize cortisone, using a complicated 36-step process that started with deoxycholic acid, which was extracted from ox bile . [43] The low efficiency of converting deoxycholic acid into cortisone led to a cost of US $200 per gram. Russell Marker , at Syntex , discovered a much cheaper and more convenient starting material, diosgenin from wild Mexican yams . His conversion of diosgenin into progesterone by a four-step process now known as Marker degradation was an important step in mass production of all steroidal hormones, including cortisone and chemicals used in hormonal contraception . [44] In 1952, . Peterson and . Murray of Upjohn developed a process that used Rhizopus mold to oxidize progesterone into a compound that was readily converted to cortisone. [45] The ability to cheaply synthesize large quantities of cortisone from the diosgenin in yams resulted in a rapid drop in price to US $6 per gram, falling to $ per gram by 1980. Percy Julian's research also aided progress in the field. [46] The exact nature of cortisone's anti-inflammatory action remained a mystery for years after, however, until the leukocyte adhesion cascade and the role of phospholipase A2 in the production of prostaglandins and leukotrienes was fully understood in the early 1980s.

Media:

systemic corticosteroid medicationssystemic corticosteroid medicationssystemic corticosteroid medicationssystemic corticosteroid medicationssystemic corticosteroid medications

http://buy-steroids.org